cotila  1.2.1
A compile time linear algebra system
math.h
Go to the documentation of this file.
1 
4 #ifndef COTILA_MATRIX_MATH_H_
5 #define COTILA_MATRIX_MATH_H_
6 
7 #include<algorithm>
8 
9 #include <cotila/scalar/math.h>
10 #include <cotila/vector/vector.h>
11 #include <cotila/vector/math.h>
12 #include <cotila/matrix/matrix.h>
13 #include <cotila/matrix/utility.h>
14 #include <cotila/detail/assert.h>
15 
16 namespace cotila {
17 
29 template <typename T, std::size_t M, std::size_t N>
30 constexpr matrix<T, M, N> conj(const matrix<T, M, N> &m) {
31  return elementwise(cotila::conj<T>, m);
32 }
33 
41 template <typename T, std::size_t M, std::size_t N>
43 real(const matrix<T, M, N> &m) {
44  return elementwise([](auto i) { return std::real(i); }, m);
45 }
46 
54 template <typename T, std::size_t M, std::size_t N>
55 constexpr matrix<detail::remove_complex_t<T>, M, N>
56 imag(const matrix<T, M, N> &m) {
57  return elementwise([](auto i) { return std::imag(i); }, m);
58 }
59 
67 template <typename T, std::size_t M, std::size_t N>
69  return generate<N, M>([&m](auto i, auto j){return m[j][i];});
70 }
71 
79 template <typename T, std::size_t M, std::size_t N>
81  return transpose(conj(m));
82 }
83 
92 template <typename T, std::size_t M, std::size_t N, std::size_t P>
94  const matrix<T, N, P> &b) {
95  return generate<M, P>([&a, &b](auto i, auto j){return cotila::sum(a.row(i)*b.column(j));});
96 }
97 
107 template <typename T, std::size_t M, std::size_t N,
108  std::size_t P, std::size_t Q>
110  const matrix<T, P, Q> &b) {
111  return generate<M * P, N * Q>([&a, &b](auto i, auto j) { return a[i / P][j / Q] * b[i % P][j % Q]; });
112 }
113 
122 template <typename T, std::size_t M, std::size_t N>
123 constexpr T macs(const matrix<T, M, N> &m) {
124  return max(
125  generate<N>([&m](std::size_t i) { return sum(abs(m.column(i))); }));
126 }
127 
136 template <typename T, std::size_t M, std::size_t N>
137 constexpr T mars(const matrix<T, M, N> &m) {
138  return max(generate<M>([&m](std::size_t i) { return sum(abs(m.row(i))); }));
139 }
140 
142 template <typename T, std::size_t M, std::size_t N>
143 constexpr std::tuple<matrix<T, M, N>, std::size_t, T>
144 gauss_jordan_impl(matrix<T, M, N> m, T tolerance) {
145  COTILA_DETAIL_ASSERT_FLOATING_POINT(T)
146  COTILA_DETAIL_ASSERT_REAL(T)
147 
148  // Define function for determining if an element is negligible
149  auto negligible = [&tolerance](const T &v) { return abs(v) < tolerance; };
150 
151  T det = 1;
152  std::size_t rank = 0;
153  std::size_t i = 0, j = 0;
154  while (i < M && j < N) {
155  // Choose largest magnitude as pivot to avoid adding different magnitudes
156  for (std::size_t ip = i + 1; ip < M; ++ip) {
157  if (abs(m[ip][j]) > abs(m[i][j])) {
158  for (std::size_t jp = 0; jp < N; ++jp) {
159  auto tmp = m[ip][jp];
160  m[ip][jp] = m[i][jp];
161  m[i][jp] = tmp;
162  }
163  det *= -1;
164  break;
165  }
166  }
167 
168  // If m_ij is still 0, continue to the next column
169  if (!negligible(m[i][j])) {
170  // Scale m_ij to 1
171  auto s = m[i][j];
172  for (std::size_t jp = 0; jp < N; ++jp)
173  m[i][jp] /= s;
174  det /= s;
175 
176  // Eliminate other values in the column
177  for (std::size_t ip = 0; ip < M; ++ip) {
178  if (ip == i)
179  continue;
180  if (!negligible(m[ip][j])) {
181  auto s = m[ip][j];
182  [&]() { // wrap this in a lambda to get around a gcc bug
183  for (std::size_t jp = 0; jp < N; ++jp)
184  m[ip][jp] -= s * m[i][jp];
185  }();
186  }
187  }
188 
189  // Increment rank
190  ++rank;
191 
192  // Select next row
193  ++i;
194  }
195  ++j;
196  }
197  det = (rank == M) ? det : 0;
198  return {m, rank, det};
199 }
200 
202 template <typename T, std::size_t M, std::size_t N>
203 constexpr std::tuple<matrix<T, M, N>, std::size_t, T>
204 gauss_jordan_impl(const matrix<T, M, N> &m) {
205  T tol = std::max(N, M) * std::numeric_limits<T>::epsilon() * mars(m);
206  return gauss_jordan_impl(m, tol);
207 }
208 
219 template <typename T, std::size_t M, std::size_t N>
220 constexpr matrix<T, M, N> rref(const matrix<T, M, N> &m) {
221  return std::get<0>(gauss_jordan_impl(m));
222 }
223 
234 template <typename T, std::size_t M, std::size_t N>
235 constexpr matrix<T, M, N> rref(const matrix<T, M, N> &m, T tolerance) {
236  return std::get<0>(gauss_jordan_impl(m), tolerance);
237 }
238 
245 template <typename T, std::size_t M, std::size_t N>
246 constexpr std::size_t rank(const matrix<T, M, N> &m) {
247  return std::get<1>(gauss_jordan_impl(m));
248 }
249 
256 template <typename T, std::size_t M>
257 constexpr T det(const matrix<T, M, M> &m) {
258  return std::get<2>(gauss_jordan_impl(m));
259 }
260 
269 template <typename T, std::size_t M>
271  if (rank(m) < M)
272  throw "matrix is not invertible";
273  return submat<M, M>(rref(horzcat(m, identity<T, M>)), 0, M);
274 }
275 
283 template <typename T, std::size_t M>
284 constexpr T trace(const matrix<T, M, M> &m) {
285  return sum(generate<M>([&m](std::size_t i){ return m[i][i]; }));
286 }
287 
290 } // namespace cotila
291 
292 #endif // COTILA_MATRIX_MATH_H_
constexpr vector< detail::remove_complex_t< T >, N > abs(const vector< T, N > &v)
computes the elementwise absolute value
Definition: math.h:73
constexpr T trace(const matrix< T, M, M > &m)
computes the trace
Definition: math.h:284
constexpr T macs(const matrix< T, M, N > &m)
Computes the maximum absolute column sum norm.
Definition: math.h:123
Mathematical operations on vectors.
constexpr matrix< T, M, N+P > horzcat(const matrix< T, M, N > &a, const matrix< T, M, P > &b)
horizontally concatenates two matrices
Definition: utility.h:154
constexpr matrix< T, N, M > transpose(const matrix< T, M, N > &m)
computes the transpose
Definition: math.h:68
constexpr std::size_t rank(const matrix< T, M, N > &m)
Compute the rank.
Definition: math.h:246
Definition: math.h:16
constexpr T max(const vector< T, N > &v)
computes the maximum valued element
Definition: math.h:119
constexpr vector< detail::remove_complex_t< T >, N > real(const vector< T, N > &v)
computes the elementwise real
Definition: math.h:50
constexpr matrix< T, M, P > matmul(const matrix< T, M, N > &a, const matrix< T, N, P > &b)
computes the matrix product
Definition: math.h:93
constexpr T det(const matrix< T, M, M > &m)
Compute the determinant.
Definition: math.h:257
Contains the definition of the cotila::matrix class.
constexpr vector< T, M > row(std::size_t i) const
access specified row
Definition: matrix.h:43
constexpr matrix< T, M, M > inverse(const matrix< T, M, M > &m)
computes the matrix inverse
Definition: math.h:270
constexpr vector< T, N > column(std::size_t i) const
access specified column
Definition: matrix.h:55
Contains the definition of the cotila::vector class.
A container representing a matrix.
Definition: matrix.h:25
constexpr vector< detail::remove_complex_t< T >, N > imag(const vector< T, N > &v)
computes the elementwise imag
Definition: math.h:62
constexpr matrix< U, N, M > elementwise(F f, const matrix< T, N, M > &m, const Matrices &... matrices)
applies a function elementwise between many matrices
Definition: utility.h:28
constexpr matrix< T, M, N > rref(const matrix< T, M, N > &m, T tolerance)
Compute the reduced row echelon form.
Definition: math.h:235
constexpr matrix< T, M *P, N *Q > kron(const matrix< T, M, N > &a, const matrix< T, P, Q > &b)
Computes the kronecker tensor product.
Definition: math.h:109
Mathematical operations on scalar values.
constexpr matrix< T, N, M > hermitian(const matrix< T, M, N > &m)
computes the Hermitian transpose
Definition: math.h:80
constexpr T sum(const vector< T, N > &v)
computes the sum of elements
Definition: math.h:99
constexpr T mars(const matrix< T, M, N > &m)
Computes the maximum absolute row sum norm.
Definition: math.h:137
constexpr vector< T, N > conj(const vector< T, N > &v)
computes the elementwise complex conjugate
Definition: math.h:27