cotila  1.2.1
A compile time linear algebra system

◆ kron()

template<typename T , std::size_t M, std::size_t N, std::size_t P, std::size_t Q>
constexpr matrix<T, M * P, N * Q> cotila::kron ( const matrix< T, M, N > &  a,
const matrix< T, P, Q > &  b 
)
Parameters
aan $M \times N$ matrix
ban $P \times Q$ matrix
Returns
An $ MP \times NQ $ matrix $ \textbf{a}\otimes\textbf{b} $ of type T such that $ \left(\textbf{a}\otimes\textbf{b}\right)_{ij} = \textbf{a}_{\lfloor i/P \rfloor,\lfloor j/Q \rfloor}\textbf{b}_{i\textrm{%}P,j\textrm{%}Q} $ where $ i \textrm{%} P $ is the remainder of $ i/P $

Computes the kronecker tensor product of two matrices.